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Random-walk-based estimates of transport properties in small specimens of composite material
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A method based on random walks is developed for estimating the dc conductance and similar transport
properties in small specimens of composite materials. The method is valid over a much wider range of material
structures than are asymptotic methods, and requires only that the internal structure of the material be known.
The error in its estimates is limited primarily by CPU speed. It is found to work best for composites consisting
of a bulk conducting phase and inclusions of lower conductivity.
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I. INTRODUCTION

Given a specimen of disordered material whose multi
phases have different physical properties, asymptotic m
ods can be used to estimate the conductivity of the mate
and hence the conductance of a specimen@1–3#. These meth-
ods serve as laws of large numbers for physical propertie
random structures, and work by averaging away the effe
of disorder and replacing a multiphase material by the
with uniform physical properties and the same external
ometry. For them to work, they require that the internal str
ture of the material be relatively uniform, so that local pro
erty fluctuations can be averaged away.

In problems in materials science, specimens exist wh
do not meet these uniformity criteria. The specimen m
consist of a small number of relatively large inclusions in
more conductive matrix, or may take the form of a thin sh
whose properties are uniform over the long dimensions
not over the short dimension. This nonuniformity will pro
duce between-specimen variability and within-specim
variability that may have importance in applications, a
which cannot be estimated by asymptotic means. Ideall
method of estimating specimen conductance should be
pendent upon very few assumptions concerning inclus
shape, uniformity, or complexity of structure, and should
straightforward to implement.

A second potential use of a small sample method ar
when attempting to fit an asymptotic method to a specim
with a specific internal geometry. Some asymptotic meth
are analytically derived without reference to specific spe
men geometries, and considerable effort may be require
determine exactly what a material should look like to ha
those properties@4#. In practice, many asymptotic method
are often applied to data, and then a choice is made on
basis of goodness of fit@5–9#. Use of a small specimen es
timate upon one large specimen or many small specimen
known structure could also be used to establish if that st
ture can lead to a particular class of asymptotic behavio

A robust, random-walk-based estimator for the dc cond
tance of a composite specimen of known internal struct
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will be derived. This procedure can also be used to estim
any physical property analogous to conductance@10#, such as
electrical permittance, thermal conductance, and diffusio

II. RANDOM-WALK-BASED METHODS FOR LARGE
SAMPLES

The conductivity of large samples can be estima
through simulation routines based upon the Einstein co
spondence between diffusivity and random walks@11#. In the
ant-in-the-labyrinth algorithm@12,13#, points are randomly
chosen within a conductive phase of a composite. Each
these points is used as the starting point for a simple rand
walk with fixed step length and randomly chosen orientat
at each step, which is used to simulate a diffusion. When
random walk hits an inclusion, its step length changes if
inclusion is conducting, and the walk stops at the surfac
the inclusion is insulating. The walk is run for a fixed num
ber of time steps, and the average Euclidean distance t
eled is proportional to the conductivity of the composite.

For smaller specimens of composite, this algorithm c
only be used under restrictive conditions. If the specimen
a symmetrical internal structure and a rectangular ove
shape, then, by imposing periodic boundary conditions,
conductance can be found by the large sample method. If
specimen is not rectangular~e.g., it is cylindrical! or if the
internal structure is irregular~e.g., it is a subset of a random
sphere packing!, then this method cannot be used.

III. RANDOM-WALK-BASED METHODS FOR SMALL
SAMPLES

For this and further sections, the transport property c
sidered will be dc conduction. To develop theory and me
ods, the specimen whose conductance is to be estimated
square regionD in R2 with sides of unit length. This bound
ary is divided into four parts~Fig. 1!: the sideA1 through
which the current enters, the opposite sideA0 through which
the current leaves, and two insulated sidesS1 andS2 through
which no current may pass. Any inclusions will be assum
to have boundaries that are Lipschitz-continuous functio
and so do not possess too many corners or very rough
tions. If the inclusions have random size, it will be assum
that there is a fixed minimum size. Thek inclusions present
©2003 The American Physical Society04-1
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are designatedB1 , . . . ,Bk . The inclusion conductivity is
s1P@0,̀ ) and the continuous phase conductivity iss0
P(0,̀ ). No assumptions will be made about the arran
ment of the inclusions within the specimen, except that th
locations, shapes, and orientations are known.

A. The existence of a solution

The flow of dc current through the specimen is det
mined by a potentialf, which must satisfy

“•s“f50, ~1!

wheres:R2→@0,̀ ) is anL` function and the boundary con
ditions are

f51 on A1 ~x51!, ~2!

f50 on A0 ~x50!, ~3!

]f

]n
50 on S1 ,S2 , ~4!

s
]f

]n
is C1 on the boundary ofB1 , . . . ,Bk , ~5!

wheren is a normal vector toS1 , S2 , or Bi . TheB1 , . . . ,Bk
are considered to be parts of the boundary if the inclusi
are insulating. Since Eq.~1! is an elliptical partial differential
equation with anL` coefficient and since the boundary co
ditions are Lipschitz, there exists a unique solutionf to the
equation@14# which will be Hölder continuous if not twice
differentiable at almost every point in the specimen@15#.
Note that this existence result and several further results
be generalized to specimens inR3 having reasonable~i.e.,
smooth, nonfractal! boundaries but arbitrary shape and stru
ture.

FIG. 1. The specimen considered here is a unit square in
plane. The current enters throughA1 and leaves atA0, and the sides
S1 and S2 are insulated. The inclusionB1 may be insulating or
conducting, but not superconducting. The dotted line is the loca
of the initial points for the diffusions and random walks discuss
in Sec. III B 1.
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If there are no inclusions, the solution will b
f(x,y)5x at any point inD. In general, the solutionf can-
not be expressed in terms of elementary functions or po
series, but it is possible to directly estimate the value off at
any point using random walks in the plane.

B. Estimation of conductance using a continuous random walk

By using discrete approximations to continuous rand
walks, the random geometry of a specimen can be unrave
rather than averaged away. The method was developed
generalization of the discrete lattice methods for resistor n
works developed by Doyle and Snell@16#. While these meth-
ods are developed for a planar specimen, they generaliz
any three-dimensional~or higher! specimen for which a po-
tential f can be shown to exist.

1. Estimating the conductance

The relative conductance of two unit square specim
satisfies

§1

§2
5

I 1

I 2
,

where§ j is the conductance of specimenj and I j is its cur-
rent flux across the linex50, as defined by

I j5E
0

1

s~0,y!
]f j

]x
~0,y!dy.

An estimator of§1 /§2 can be constructed which avoids es
mating the derivative directly.

Assume that there are no inclusions on the linex5e ~see
Fig. 1!, or in the region betweenA0 and x5e, wheree is
close to 0. A one-term Taylor series expansion of the pot
tial f of specimeni is

f i~e,y!5f i~0,y!1S ]f i

]x
~0,y! D e1S ]2f i

]x2
~j~y!,y!D e2

2

for some valuesj(y)P$(d,y):0<d<e%, and so

E
0

1]f i

]x
~0,y!dy5

1

e
w i2

e

2
Ri , ~6!

where

w i5E
0

1

f i~e,y!dy

and

Ri5E
0

1 ]2f i

]x2
~j i~y!,y!dy.

If the conductance of the specimen is being compared to
inclusion-free specimen whose potential isf0(x,y)5x, then
*0

1(]f0 /]x)(0,y)dy51 and the relative conductance can

e

n
d
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estimated using the leading term of Eq.~6!. If the conduc-
tances of two specimens with potentialsf i , i 51,2 are being
compared, then

§1

§2
5

w1

w2
1

e2

2 S w1R22w2R1

w2„w22~e/2!R2…
D ~7!

and sow1 /w2 is an estimator of the relative conductance
the two specimens.

2. Estimating the potential

Random walks can be used to approximate the solut
of elliptical boundary value problems if the local conducti
ity s(x,y) is a bounded measurable function@17,18#.

Under the boundary conditions specified in Eqs.~2!–~5!,
if ( x,y) is any point in a conducting region on the interior
the specimen, then

f~x,y!5E
A1

f~1,j!P1~dj!1E
A0

f~0,j!P0~dj!, ~8!

wherePi(dj) is the probability that a Brownian motion tha
begins at (x,y) reaches a small neighborhood around a po
j on the boundaryAi before reaching any other point onA0
or A1. By fixing f at 0 and 1 onA0 andA1, respectively, Eq.
~8! reduces to

f~x,y!5Prob@Brownian motion beginning at~x,y!

crossesA1 before crossingA0], ~9!

which is known as theescape probability to A1 from (x,y).
This allows f to be estimated at individual points inD
@19,20# to arbitrary accuracy. Also, Eq.~9! shows that the
integralw used in Eqs.~6! and~7! is the mean escape prob
ability to A1 for points randomly chosen from a uniform
distribution on the linex5e.

3. Approximating the Brownian motion

Realizations of a Brownian motion cannot be direc
simulated, but must themselves be simulated via other
chastic processes. A combination of two different simulatio
is used, in order to balance the speed of execution agains
need for accuracy in the crucial regions around the bou
aries and interfaces in the specimen.

In the neighborhood of boundaries and interfaces,
Brownian motion is simulated by a simple random walk. T
step length in thei th phase is chosen to be proportional
the conductivitys i of that phase. The direction of each st
is chosen independently from a uniform distribution on t
unit disk. If a step intersects an insulating boundary, then
step terminates at the boundary and takes the next step
will send it free from the insulating surface. If the ste
crosses a boundary from a phase of conductivitys i to a
phase of conductivitys j.0 at a fractionr of its length, then
the step length changes fromd i to

S r1~12r!
s j

s i
D d i , ~10!
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as in Honget al. @13#. The subset of phasei in D where the
simple random walk is used is defined to be all points with
5d i of a boundary or interface. For a single spherical inc
sion, these neighborhoods are shown in Fig. 2.

In the remainder ofD, the diffusion is simulated by using
the random walk on spheres@21#, as implemented in the
plane. In thei th phase, a sphere having diameter 2.5d i less
than the distance to the nearest boundary or interface is
structed at the end of the previous step, and the next ste
the simulation is a point randomly chosen from a unifo
distribution on the surface of this disk.

Each walk begins from a point (e,U) on the linex5e,
whereU is chosen from a uniform distribution on the inte
val @0,1#. If each choice of starting point and subseque
step direction are mutually independent, thenw is estimated
by

ŵ5
1

N (
i 51

N

F i , ~11!

where eachF i;binomial @1,f(e,Ui)#. This is an unbiased
estimator when the conductance relative to the empty sq
specimen is estimated, since

E@ŵ#5E†E@F1uU1#‡5E@f~e,U1!#5w.

IV. COMPARISON WITH EFFECTIVE MEDIUM
THEORIES

Effective medium theories@22,23# and similar large
sample theories replace a disordered specimen of two ph
by a specimen of single phase of intermediate conducti
with the same dimensions. The method developed here
be seen as replacing the original specimen with a new sp
men of only the matrix phase, having the same conducta
as the composite specimen but having a different shape

FIG. 2. On the white regions, the random walk proceeds vi
walk on spheres. On the lightly shaded regions, the walk proce
by steps of fixed lengthd0, and the regions have thickness 5d0.
Within the inner shaded ring, the walk proceeds by steps of len
(s1 /s0)d0, wheres1 is the inclusion conductivity ands0 is the
continuous phase conductivity. Steps crossing the boundary
tween the two shaded regions have their length altered via Eq.~10!.
4-3
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If a rectangular specimen consists of a single phase
overall conductance is inversely proportional tod, the dis-
tance betweenA0 and A1. Since the conductance§ is ap-
proximately proportional to the escape probabilityw, d is
approximately proportional tow21. This can be shown di-
rectly for diffusion on a line by results from diffusion theor
@24#, but these results only hold when no inclusions a
present. Since the results developed here hold when in
sions are present, the determination ofw for a specimen is
analogous to findingd for a pure matrix specimen having th
same conductance as the original composite specimen.

If the inclusions in a specimen are insulating, then
matrix phase is formed into a network of conductor. If t
inclusions are spherical, then the basic structure of this
work can be described by a Voronoi tessellation@25#. If con-
ductances are assigned to the branches of that network,
this can produce a discrete analog of the network itself@26#.
Random walks can be used to estimate a distance acro
network of this form, designated as the resistance dista
@27#. The averaged escape probabilityw represents a con
tinuous generalization of this discrete metric.

V. SOURCES AND CONTROL OF ERROR

There are three main sources of error in the proced
The control of these errors is limited by CPU speed.

A. Errors from estimating the potential

The error in the estimation ofw is best expressed as th
standard deviation of the estimatorŵ. The variance ofŵ is
given by

N var@ŵ#5E†var@F1uU1#‡1var@E†F1uU1#‡

5„E@f~e,U1!#2E@f~e,U1!2#…

1„E@f~e,U1!2#2E@f~e,U1!#2
…

5w~12w!,

and so the standard deviation ofŵ is

s@ŵ#5Aw~12w!

N
.

By choosingN large, this error can be made as small
needed.

B. Errors from estimating the derivative

The absolute value of the error term in Eq.~7! is bounded
above by

S max~w1 ,w2!

min~w2 ,eI 2! Dmax~R1 ,R2!e2.

The first term in this product attains a near constant value
e decreases, as long asRi is small. The middle term in the
product is small whene is small, since then the equipotenti
lines betweenA0 andx5e are nearly straight. When this i
04110
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the case,]2f i /]y2(x,y) is near zero in this region. If the
line x5e passes very close to the boundaries of inclusio
with internal conductivity greatly different from matrix con
ductivity, then this error is increased.

C. Errors from approximating the diffusion

Simulation of the diffusion by the random walk o
spheres is exact. Errors arise only in boundary and transi
regions, where the random walk changes its step length
stops. These errors cannot be quantified using existing m
ods, especially in a simulation of a diffusion through a sy
tem of this complexity. They can be minimized by choosi
the step size to be as small as feasible; Schwartz and Ban
@28# suggest a step size of 0.01 times the diameter of
smallest inclusion, but this was found to produce small po
tive bias in the relative conductance estimates in simula
experiments. This bias was eliminated by choosing step s
of 0.0001–0.0005 times the diameter of the smallest inc
sion.

VI. SIMULATION EXPERIMENTS AND COMPARISON
WITH THEORY

Two sets of simulation experiments were carried out, o
based on a regular arrangement of disks and the other b
on disordered arrangements.

In each case, 106 random walks are simulated on a Su
Ultra 10 CPU. The program is written in C, incorporating t
ran2 random number generator from Ref.@29#. The time re-
quired is proportional top and to the number of spheres us
for any fixed ratio ofs1 /s2. Each walk is allowed to take
atmost 503106 steps. Each data point requires between
and 90 h to estimate, but this will be reducible through f
ther refinements to the diffusion approximation~e.g., paral-
lelization or improved implementation of the random wa
on spheres!. While these times may not compare favorab
with finite element methods in some circumstances, cod
this algorithm may be much easier in circumstances wh
no finite element code exists, and it can just as easily
applied to specimens in three dimensions. Also, when inc
sions are insulating, abrupt conductivity transitions are de
within a simple way by the random walk, and dense me
structures at the boundaries are not required.

A. Asymptotic methods for ordered inclusions

If the inclusions in a very large specimen of heterog
neous material form an ordered array, improvements on R
leigh’s @30# estimate for the conductivity of the composi
material were given by Perrinset al. @31# in the case of a
square array of disks in the plane,

sc

s0
512

2p

T1p2
0.305827p4T

T221.402958p8
2

0.013362p8

T

, ~12!

where
4-4
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T5
s02s1

s01s1
.

If the specimen is small and the inclusions form an orde
square pattern centered inside the specimen, then Eq.~12!
also yields the conductance of the specimen, relative to
conductance of a specimen of pure matrix of the same
and shape. In almost no other circumstance can an ana
cally derived relationship be found for small specimen co
ductance.

B. Ordered inclusions

The conductance of a specimen whose inclusions are
ranged in a centered square array within the specimen~e.g.,
Fig. 5, left! is estimated relative to the conductance of a p

FIG. 3. Comparison of asymptotic estimates@lines, as found
from Eq. ~12!# with simulation estimates for specimens with
single inclusion whose conductivity satisfiess1 /s050.0 (1),
s1 /s050.1 (3). ands1 /s050.5 (h). Note that error decrease
asp ands1 /s0 decrease. All estimates are made relative to a sp
men of pure conductor.

FIG. 4. Comparison of asymptotic estimates@lines, as found
from Eq. ~12!# with simulation estimates for specimens with
single inclusion whose conductivity satisfiess1 /s052 (1) and
s1 /s0510 (3). Note that error decreases asp and s1 /s0 de-
crease. All estimates are made relative to a specimen of pure
ductor.
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conductor specimen. Results are compared with Eq.~12! for
s1,s0 in Fig. 3 and fors1.s0 in Fig. 4.

In all cases where the inclusions are less conductive,
simulations and Eq.~12! are in very strong agreement. Varia
tion around the asymptotic estimate increases with inclus
conductivity, and also as the size of the inclusions is reduc

C. Disordered inclusions

The major purpose of using this algorithm on sm
samples is to determine the degree to which deviations f
the ordered arrangement of inclusions affect the cond
tance. For a specimen with nine insulating disk inclusio
conductance estimates are found for an ordered speci
~Fig. 5, left!, a specimen that is arbitrarily disordered~Fig. 5,
right!, and a specimen prepared by randomly perturbing
ordered arrangement~Fig. 5, center!. The perturbed arrange
ment was prepared by dividing the specimen into nine s
squares and placing the inclusions randomly in each s
square such that the inclusions used for thep50.5 case were
contained completely within each square. In all cases,p was
adjusted by changing the radius of the inclusions.

When p is small, the inclusions are isolated in a larg
volume of matrix and the estimates for all three specim
are very similar. Asp increases, the matrix becomes a stru
tured conducting network, and the different arrangement
inclusions produce differences in the conductance that

i-

n-

FIG. 5. From left to right: an ordered array of nine inclusions
perturbed ordered array, and an arbitrarily arranged array. All in
sions are assumed to be insulating and of the same size. The vo
fraction of inclusion in all three specimens isp50.5.

FIG. 6. Plot of the effects of inclusion arrangement on specim
conductance. All inclusions were centered at the same location
those seen in Fig. 5, and sphere radii were reduced to give o
values ofp. The solid line is Eq.~12!, while the points represen
simulation estimates for the ordered (1), randomly perturbed
(3), and arbitrarily arranged (h) specimens.
4-5
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most noticeable in the arbitrarily ordered specimen~see Fig.
6!. The greater number of choke points in the conduc
network produces increasingly lower conductances asp ap-
proaches 0.5.

VII. CONCLUSIONS

~i! Escape probabilities can be used to estimate the c
ductance of small composite specimens, given their inte
structure.

~ii ! The procedure does not depend upon strong assu
tions regarding internal specimen geometry, and can be
-

B

s

04110
r

n-
al

p-
s-

ily implemented when the random walk on spheres is us
~iii ! The accuracy of the method can be understood

controlled, and is primarily limited by computing speed.
~iv! All results extend to specimens inR3.
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