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Random-walk-based estimates of transport properties in small specimens of composite materials
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A method based on random walks is developed for estimating the dc conductance and similar transport
properties in small specimens of composite materials. The method is valid over a much wider range of material
structures than are asymptotic methods, and requires only that the internal structure of the material be known.
The error in its estimates is limited primarily by CPU speed. It is found to work best for composites consisting
of a bulk conducting phase and inclusions of lower conductivity.
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I. INTRODUCTION will be derived. This procedure can also be used to estimate
any physical property analogous to conductdri¢®, such as
Given a specimen of disordered material whose multipleelectrical permittance, thermal conductance, and diffusion.
phases have different physical properties, asymptotic meth-
ods can be used to estimate the CoanCtiVity of the material II. RANDOM-WALK-BASED METHODS FOR LARGE
and hence the conductance of a specifder8]. These meth- SAMPLES
ods serve as laws of large numbers for physical properties on
random structures, and work by averaging away the effects The conductivity of large samples can be estimated
of disorder and replacing a multiphase material by the onéhrough simulation routines based upon the Einstein corre-
with uniform physical properties and the same external gespondence between diffusivity and random w4lks. In the
ometry. For them to work, they require that the internal strucant-in-the-labyrinth algorithni12,13, points are randomly
ture of the material be relatively uniform, so that local prop-chosen within a conductive phase of a composite. Each of
erty fluctuations can be averaged away. these points is used as the starting point for a simple random
In problems in materials science, specimens exist whichvalk with fixed step length and randomly chosen orientation
do not meet these uniformity criteria. The specimen mayat each step, which is used to simulate a diffusion. When the
consist of a small number of relatively large inclusions in arandom walk hits an inclusion, its step length changes if the
more conductive matrix, or may take the form of a thin sheeinclusion is conducting, and the walk stops at the surface if
whose properties are uniform over the long dimensions buthe inclusion is insulating. The walk is run for a fixed num-
not over the short dimension. This nonuniformity will pro- ber of time steps, and the average Euclidean distance trav-
duce between-specimen variability and within-specimergled is proportional to the conductivity of the composite.
variability that may have importance in applications, and For smaller specimens of composite, this algorithm can
which cannot be estimated by asymptotic means. Ideally, @nly be used under restrictive conditions. If the specimen has
method of estimating specimen conductance should be d& symmetrical internal structure and a rectangular overall
pendent upon very few assumptions concerning inclusioshape, then, by imposing periodic boundary conditions, the
shape, uniformity, or complexity of structure, and should beconductance can be found by the large sample method. If the
straightforward to implement. specimen is not rectangulée.g., it is cylindrical or if the
A second potential use of a small sample method arise#iternal structure is irregulde.g., it is a subset of a random
when attempting to fit an asymptotic method to a specimesphere packing then this method cannot be used.
with a specific internal geometry. Some asymptotic methods
are analytical_ly derived Wit_hout reference to specific s_peci- 1. RANDOM-WALK-BASED METHODS FOR SMALL
men geometries, and considerable effort may be required to SAMPLES
determine exactly what a material should look like to have
those propertie$4]. In practice, many asymptotic methods  For this and further sections, the transport property con-
are often applied to data, and then a choice is made on thgdered will be dc conduction. To develop theory and meth-
basis of goodness of fj6—9]. Use of a small specimen es- ods, the specimen whose conductance is to be estimated is a
timate upon one large specimen or many small specimens sfjuare regio in R? with sides of unit length. This bound-
known structure could also be used to establish if that strucary is divided into four partgFig. 1): the sideA; through
ture can lead to a particular class of asymptotic behavior. which the current enters, the opposite sidethrough which
Arobust, random-walk-based estimator for the dc conducthe current leaves, and two insulated si@gandS, through
tance of a composite specimen of known internal structurevhich no current may pass. Any inclusions will be assumed
to have boundaries that are Lipschitz-continuous functions,
and so do not possess too many corners or very rough sec-
*Email address: jdp@math.umd.edu; tions. If the inclusions have random size, it will be assumed
http://www.math.umd.edu/jdp that there is a fixed minimum size. Tleanclusions present
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Sy If there are no inclusions, the solution will be
¢(X,y)=x at any point inD. In general, the solutiog can-

not be expressed in terms of elementary functions or power
series, but it is possible to directly estimate the value @it

any point using random walks in the plane.

B. Estimation of conductance using a continuous random walk

Ag A
! By using discrete approximations to continuous random
walks, the random geometry of a specimen can be unraveled,
rather than averaged away. The method was developed as a
generalization of the discrete lattice methods for resistor net-
y ; works developed by Doyle and Sngll6]. While these meth-
ods are developed for a planar specimen, they generalize to
52 any three-dimensiondbr highey specimen for which a po-
tential ¢ can be shown to exist.
FIG. 1. The specimen considered here is a unit square in the
plane. The current enters through and leaves a,, and the sides 1. Estimating the conductance
S, and S, are insulated. The inclusioB, may be insulating or The relative conductance of two unit square specimens
conducting, but not superconducting. The dotted line is the Iocatiogatisﬁes
of the initial points for the diffusions and random walks discussed
in Sec. llIB 1.

X

are designated,, ... ,By. The inclusion conductivity is s2 12

o1[0) and the continuous phase conductivity dg wheres; is the conductance of specimgm@ndl; is its cur-

€ (0:2). No.assumptlon.s \.N'” be maqe about the armange-ent flux across the ling=0, as defined by
ment of the inclusions within the specimen, except that their

locations, shapes, and orientations are known. 1 I
Ij:f o(0y)— - (0y)dy.

A. The existence of a solution 0

The flow of dc current through the specimen is deter-An estimator ofs, /s, can be constructed which avoids esti-

mined by a potentialh, which must satisfy mating the derivative directly.
Assume that there are no inclusions on the kree (see
V.oV ¢=0, (D) Fig. 1), or in the region betweeA, and x= ¢, wheree is

) _ " _ close to 0. A one-term Taylor series expansion of the poten-
whereg:R“—[0,») is anL™ function and the boundary con- g & of specimen is

ditions are
Jb: (92 . 2
¢=1 on Ay (x=1), @ giley)=ei(0y)+ %(o,y) e+ —¢;'(§(y),y))%
IX
¢=0 on Ay (x=0), 3
for some valueg(y) e {(6,y):0<6<¢€}, and so
d¢
—=0 onS;,S,, (4) 19 _1 €
dan o IX (an)dy_ €¢i 2Ri1 (6)
i
oo is C! ontheboundary ofB;, ... By, (5  Where
1
wheren is a normal vector t&,;, S,, orB;. TheB,, ... By ®i= jo di(e,y)dy

are considered to be parts of the boundary if the inclusions
are insulating. Since Eql) is an elliptical partial differential d
equation with arlL.” coefficient and since the boundary con- an
ditions are Lipschitz, there exists a unique solutipro the L g2
equation[14] which will be Hdder continuous if not twice R:f ﬁ(g,(y) y)dy.
differentiable at almost every point in the specindr)]. o ogx2 T
Note that this existence result and several further results can

be generalized to specimens itf having reasonablé.e.,  If the conductance of the specimen is being compared to an
smooth, nonfractalboundaries but arbitrary shape and struc-inclusion-free specimen whose potentialfig(x,y) =x, then
ture. fé(aqso/ax)(o,y)dy: 1 and the relative conductance can be
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estimated using the leading term of E§). If the conduc-
tances of two specimens with potentidls, i=1,2 are being
compared, then

2
S1_ ¢1 €

i T 7
S @ 2 @)

¢1R>— @3Ry )
¢2(p2— (e/2)Ry)

and sog, /¢, is an estimator of the relative conductance of
the two specimens.

2. Estimating the potential

Random walks can be used to approximate the solutions
of elliptical boundary value problems if the local conductiv-
ity o(x,y) is a bounded measurable functigtv,18.

Under the boundary conditions specified in E€—(5),
if (x,y) is any point in a conducting region on the interior of ~ FIG. 2. On the white regions, the random walk proceeds via a
the specimen, then walk on spheres. On the lightly shaded regions, the walk proceeds

by steps of fixed length§,, and the regions have thicknes$,5

X,y) = 1,6)P,(d +f 0.£)Po(dé), (8 Within the inner shaded ring, the walk proceeds by steps of length
(X.y) fAl¢( §)P1(d¢) AO¢( §)Po(dg), (8

(o1/0¢) 69, Whereo, is the inclusion conductivity and is the
continuous phase conductivity. Steps crossing the boundary be-
whereP;(d¢) is the probability that a Brownian motion that tween the two shaded regions have their length altered viglBy.
begins at X,y) reaches a small neighborhood around a point
& on the boundary; before reaching any other point @y as in Honget al. [13]. The subset of phaden D where the
orA,. By fixing ¢ at 0 and 1 orA, andA,, respectively, Eq. Simple random walk is used is defined to be all points within

(8) reduces to 56, of a boundary or interface. For a single spherical inclu-
sion, these neighborhoods are shown in Fig. 2.
#(x,y) = Prolj Brownian motion beginning ak,y) In the remainder oD, the diffusion is simulated by using
) the random walk on spherd21], as implemented in the
crossed\, before crossing], (9 plane. In theith phase, a sphere having diameters less

than the distance to the nearest boundary or interface is con-
structed at the end of the previous step, and the next step in
the simulation is a point randomly chosen from a uniform
distribution on the surface of this disk.

Each walk begins from a pointe(U) on the linex=c¢e,
whereU is chosen from a uniform distribution on the inter-
val [0,1]. If each choice of starting point and subsequent
step direction are mutually independent, thems estimated
by

which is known as thescape probability to Afrom (X,y).
This allows ¢ to be estimated at individual points iD
[19,2Q to arbitrary accuracy. Also, Eq9) shows that the
integral ¢ used in Eqs(6) and(7) is the mean escape prob-
ability to A, for points randomly chosen from a uniform
distribution on the linex=€.

3. Approximating the Brownian motion

Realizations of a Brownian motion cannot be directly
simulated, but must themselves be simulated via other sto- .
chastic processes. A combination of two different simulations ¢=
is used, in order to balance the speed of execution against the

need for accuracy in the crucial regions around the boundgnere eachb, ~binomial[ 1,¢(e,U;)]. This is an unbiased

aries and interfaces in the specimen. _ estimator when the conductance relative to the empty square
In the neighborhood of boundaries and interfaces, th%pecimen is estimated. since

Brownian motion is simulated by a simple random walk. The

step length in theth phase is chosen t_o bg proportional to E[ $]=E[E[®,|U,]1=E[&(€,U;)]= 0.
the conductivityo; of that phase. The direction of each step

is chosen independently from a uniform distribution on the

unit disk. If a step intersects an insulating boundary, then the V. COMPARISON WITH EFFECTIVE MEDIUM
step terminates at the boundary and takes the next step that THEORIES

will send it free from the insulating surface. If the step  Efective medium theorieg22,23 and similar large
crosses a boundary from a phase of conductivifyto &  sample theories replace a disordered specimen of two phases
phase of conductivity;>0 at a fractiorp of its length, then 1,y 5 specimen of single phase of intermediate conductivity

Z|

N
> @, (11)
i=1

the step length changes frof to with the same dimensions. The method developed here can
be seen as replacing the original specimen with a new speci-
p+(1_p)ﬂ) 5 (100  men of only the matrix phase, having the same conductance
[ . . R .
T as the composite specimen but having a different shape.
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If a rectangular specimen consists of a single phase, itthe caseg?¢;/dy?(x,y) is near zero in this region. If the
overall conductance is inversely proportionaldpthe dis- line x=¢€ passes very close to the boundaries of inclusions
tance betweer\, and A;. Since the conductanceis ap-  with internal conductivity greatly different from matrix con-
proximately proportional to the escape probability d is  ductivity, then this error is increased.
approximately proportional teo~*. This can be shown di-
rectly for diffusion on a line by results from diffusion theory
[24], but these results only hold when no inclusions are
present. Since the results developed here hold when inclu- Simulation of the diffusion by the random walk on
sions are present, the determinationgofor a specimen is spheres is exact. Errors arise only in boundary and transition
analogous to finding for a pure matrix specimen having the regions, where the random walk changes its step length or
same conductance as the original composite specimen.  stops. These errors cannot be quantified using existing meth-

If the inclusions in a specimen are insulating, then theods, especially in a simulation of a diffusion through a sys-
matrix phase is formed into a network of conductor. If thetem of this complexity. They can be minimized by choosing
inclusions are spherical, then the basic structure of this nethe step size to be as small as feasible; Schwartz and Banavar
work can be described by a Voronoi tessellafi@B]. If con-  [28] suggest a step size of 0.01 times the diameter of the
ductances are assigned to the branches of that network, themallest inclusion, but this was found to produce small posi-
this can produce a discrete analog of the network if2df.  tive bias in the relative conductance estimates in simulation
Random walks can be used to estimate a distance acrossegperiments. This bias was eliminated by choosing step sizes
network of this form, designated as the resistance distancaf 0.0001-0.0005 times the diameter of the smallest inclu-
[27]. The averaged escape probabilityrepresents a con- sion.
tinuous generalization of this discrete metric.

C. Errors from approximating the diffusion

VI. SIMULATION EXPERIMENTS AND COMPARISON

V. SOURCES AND CONTROL OF ERROR WITH THEORY
There are three main sources of error in the procedure. Two sets of simulation experiments were carried out, one
The control of these errors is limited by CPU speed. based on a regular arrangement of disks and the other based
on disordered arrangements.
A. Errors from estimating the potential In each case, forandom walks are simulated on a Sun

, L . Ultra 10 CPU. The program is written in C, incorporating the
The error in the estimation af is best expressed as the ran2 random number generator from R&9]. The time re-
standard deviation of the estimatpr The variance ofp is  quired is proportional tg and to the number of spheres used

given by for any fixed ratio ofo, /o,. Each walk is allowed to take
. atmost 5x 10° steps. Each data point requires between 5
Nvar ¢]=E[vaf®4|U;]]+val E[®4|U,]] and 90 h to estimate, but this will be reducible through fur-
_ 2 ther refinements to the diffusion approximati@ng., paral-
= El¢(eU]-El¢(e,Uy) D lelization or improved implementation of the random walk
+(E[#(e,U)2]—E[p(e,Up)]?) on spheres While these times may not compare favorably
with finite element methods in some circumstances, coding
=¢(l-9), this algorithm may be much easier in circumstances where
N no finite element code exists, and it can just as easily be
and so the standard deviation gfis applied to specimens in three dimensions. Also, when inclu-
sions are insulating, abrupt conductivity transitions are dealt
olo]= [e(1—¢) within a simple way by the random walk, and dense mesh
N structures at the boundaries are not required.

By choosingN large, this error can be made as small as ) . )
needed. A. Asymptotic methods for ordered inclusions

If the inclusions in a very large specimen of heteroge-
B. Errors from estimating the derivative neous material form an ordered array, improvements on Ray-

leigh’s [30] estimate for the conductivity of the composite

The absolute value of the error term in K@) is bounded material were given by Perrinet al. [31] in the case of a

above by square array of disks in the plane,
ma ,
M) max R;,R,) €. o 2p
min( ¢, el ,) —=1- , (12)
oo T 0.30582p*T  0.01336p°
The first term in this product attains a near constant value as P T2—1.4029588 T

e decreases, as long & is small. The middle term in the
product is small wher is small, since then the equipotential
lines betweerA, andx= e are nearly straight. When this is where
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« 3 A FIG. 5. From left to right: an ordered array of nine inclusions, a
5 perturbed ordered array, and an arbitrarily arranged array. All inclu-
% 8 sions are assumed to be insulating and of the same size. The volume

fraction of inclusion in all three specimensps-=0.5.
=4
o T T T . .
0.0 02 04 06 conductor specimen. Results are compared with(E). for

o1<0y in Fig. 3 and foro1> o in Fig. 4.
P In all cases where the inclusions are less conductive, the
FIG. 3. Comparison of asymptotic estimatdimes, as found ~Simulations and Eq12) are in very strong agreement. Varia-
from Eq. (12)] with simulation estimates for specimens with a tion around the asymptotic estimate increases with inclusion
single inclusion whose conductivity satisfies,/o,=0.0 (+),  conductivity, and also as the size of the inclusions is reduced.
o,/09=0.1 (X). ando,/0,=0.5 (O). Note that error decreases
asp ando; /o decrease. All estimates are made relative to a speci- C. Disordered inclusions

men of pure conductor. . . . .
P The major purpose of using this algorithm on small

samples is to determine the degree to which deviations from
T= ‘70*‘71_ the ordered arrangement of inclusions affect the conduc-
optog tance. For a specimen with nine insulating disk inclusions,
conductance estimates are found for an ordered specimen
If the specimen is small and the inclusions form an orderedFig. 5, left, a specimen that is arbitrarily disorderédg. 5,
square pattern centered inside the specimen, then(12y. right), and a specimen prepared by randomly perturbing the
also yields the conductance of the specimen, relative to therdered arrangemeliig. 5, centex. The perturbed arrange-
conductance of a specimen of pure matrix of the same sizeent was prepared by dividing the specimen into nine sub-
and shape. In almost no other circumstance can an analytsquares and placing the inclusions randomly in each sub-
cally derived relationship be found for small specimen con-square such that the inclusions used fortl+€0.5 case were
ductance. contained completely within each square. In all capesas
adjusted by changing the radius of the inclusions.
When p is small, the inclusions are isolated in a large
volume of matrix and the estimates for all three specimens
The conductance of a specimen whose inclusions are agre very similar. A9 increases, the matrix becomes a struc-
ranged in a centered square array within the specifedn,  tured conducting network, and the different arrangements of
Fig. 5, lefY is estimated relative to the conductance of a purénclusions produce differences in the conductance that are

B. Ordered inclusions

0 <
o -~
g o | 8 o |
g © g °
o o
3 =
2 g
S w | o © |
O o O o
2 2
= k1
2 g 2 3|
b= =4
D D
B 8 =
E o E o
g7 g S
(=] o
— T T T P=3 T T T T T
0.0 0.2 04 06 0.0 0.1 0.2 03 04 05
p p
FIG. 4. Comparison of asymptotic estimafgmes, as found FIG. 6. Plot of the effects of inclusion arrangement on specimen

from Eg. (12)] with simulation estimates for specimens with a conductance. All inclusions were centered at the same locations as
single inclusion whose conductivity satisfies/ocy=2 (+) and  those seen in Fig. 5, and sphere radii were reduced to give other
o,/09=10 (X). Note that error decreases psand o/o de- values ofp. The solid line is Eq(12), while the points represent
crease. All estimates are made relative to a specimen of pure cosimulation estimates for the ordered+), randomly perturbed
ductor. (X), and arbitrarily arranged{]) specimens.
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most noticeable in the arbitrarily ordered specinteee Fig. ily implemented when the random walk on spheres is used.
6). The greater number of choke points in the conductor (iii) The accuracy of the method can be understood and
network produces increasingly lower conductanceg ap-  controlled, and is primarily limited by computing speed.
proaches 0.5. (iv) All results extend to specimens R?.
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